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In  view of the importance of concentration fluctuations in practical and theoretical 
problems of turbulent diffusion, there are presented here some invariant properties 
of the distribution of fluctuations associated with a cloud of contaminant containing 
a finite quantity Q of material. These properties are invariant provided only that Q 
is conserved, no assumption whatsoever being made about the random turbulent 
velocity field. Consequences of the results for (i) steady plumes, (ii) the representation 
of the distribution of concentration by series of (generalized) Hermite polynomials, 
and (iii) the relationship of the ensemble mean concentration with the distance 
neighbour function, are discussed using experimental evidence. 

1. Introduction 
A basic problem in turbulent diffusion is the determination of the statistical pro- 

perties of the concentration field in a cloud of contaminant containing a finite quantity 
Q of material. It will be supposed throughout this paper that Q remains the same 
throughout each realization of the dispersion so that, for example, there are no 
absorbing boundaries or chemical reactions. Naturally it will also be supposed that Q 
does not vary from realization to realization of the dispersion. But no other 
restrictions are placed on the contaminant; in particular it does not have to be 
passive. 

Let ro(X, t )  be the random distribution of concentration of the contaminant in 
any realization of the dispersion, where X is the position vector of a point in space 
relative to an origin fixed in space (or moving with uniform velocity). Then, by mass 
conservation, 

where, as throughout this paper, the integration is over all space. Define X,(t) and x 
by 

~x,(t) = xr,(x, t )  dv(x), x = x - x,. (1.2) s 
Thus X,(t) is the position vector of the centre of mass of the cloud. Its value depends 
on the distribution of I',(X,t) over the whole cloud and, for fixed t ,  will vary from 
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realization to realization. Then let r(x, t )  be defined by 

P. C. Chatwin and P. J .  Sullivan 

r(x, t )  = ro(x + x,, t )  

(Monin & Yaglom 1975, p. 554). By (1.1) and (1.2) 

J'r(x, t )  dv(X) = Q ,  jxryx, t )  ~ ( x )  = 0. (1.4) 

Thus r(x, t )  is the distribution of concentration in the framework of relative diffusion. 
There are important conceptual differences between relative and absolute diffusion 
(the latter requires examination of the statistical properties of r0(X, t ) ) .  Relative 
diffusion has important advantages over absolute diffusion, both theoretically 
(Richardson 1926; Batchelor 1952) and practically (Monin & Yaglom 1975, pp. 554, 
577). 

One fruitful field of turbulence research has been the search for invariants, that is 
statistical properties of the random velocity or concentration fields that remain 
constant as time evolves. Such invariants provide a means of checking more com- 
plicated calculations or, as in the case of conservation of energy in mechanics, of 
suggesting alternative methods of modelling the evolution. Furthermore they usually 
have simple physical interpretations. Two classical examples are the Loitsyanskii 
invariant in homogeneous isotropic turbulence (Loi tsyanskii 1939) and the Corrsin 
invariant for a homogeneous isotropic contaminant field (Corrsin 1951). General- 
izations of these invariants to anisotropic fields are given by Monin & Yaglom (1975, 
pp. 149-152), and other invariants are derived by Lumley (1966). 

During recent investigations, describedin Chatwin & Sullivan (1979a, b ) ,  the authors 
discovered that there are certain invariant properties that follow directly from (1.4). 
The purpose of this paper is to derive these properties and to discuss, with experimental 
support, some of their applications and implications. 

2. The invariant properties 
Denote ensemble means by overbars and write 

- 
r(x, t )  = C(X, t )  +c(x, t ) ,  c = r, 5 = 0, (2.1) 

so that C(x, t )  is the ensemble mean concentration and c(x, t )  is the fluctuation. In 
view of the essential inhomogeneity and non-stationarity of the statistical properties 
of r(x,t) and the (unjustified) unfamiliarity of relative diffusion, it is useful, for 
clarity, to discuss very briefly the evaluation of ensemble means. The basic point is 
that the definition of x requires that ensemble means, derived from the set of realiz- 
ations of r(x, t ) ,  be evaluated only after the centres of mass of all realizations of the 
cloud have been made coincident for each t. Thus suppose that in an experimental 
investigation N realizations of the dispersion are performed. Let 

rgyx, t )  (n = I ,  2, . . . , N )  

be the distribution of concentration in the nth realization so that (1.1) is satisfied for 
each n. Then define Xi")@) and W)(x,t) by the obvious extensions of f l .2 )  and (1.3), 
ViZ . 

&xp(t) = xrp(x, t )  ~v(x ) ,  ryx, t )  = rp(x+ xp, t ) .  (2-2) s 
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Then ensemble means of functions of F(x, t )  are determined in the normal way, typified 
by the following result for the ensemble mean concentration C(X,  t ) :  

That this discussion is not entirely trivial is clear when it is realized for example that 
G(x,  t )  is not the same as F,(x + gc, t).? 

From (1.4) and (2.2) it follows that, for each n, 

/r'(m)(x,t)dV(x) = &, /xI'(n)(x,t)dV(x) = 0,  

and so, from (2.1) and (2.3), that 

S C ( x , t ) d V ( x )  = &, S c ( x , t ) d V ( x )  = 0, 

s s 
and that 

xC(x , t )dV(x)  = 0, X C ( X , t ) d V ( X )  = 0.  

The statistical property of special interest here is r(y ,  t )  defined by 

As pointed out in Chatwin & Sullivan (1978, 1979b) r is a correlation function (in the 
sense normal in turbulence theory) whose Fourier transform is the energy spectrum of 
lcT(x, t )  dV(x) .  In  the present paper it is more important that r(y ,  t )  is one of two 
main contributions to the distance-neighbour function. 

The invariants referred to in the title of this paper are invariants of r ( y , t ) .  It is 
immediate from (2.4) and (2.6) that 

r(y ,  t )  = r( - y, t )  for all y ;  
and that 

j r ( y , t ) d V ( y )  = 0. 

m!?!..,(t) = J Y d ,  * * -  Y,r(Y,t)dV(Y)s 

Also define m{y.)k(t) by 

where n is the number of tensor suffices. It follows from (2.7) that 

m$;"+i)(t) = 0 for all n, 

mil)(t) = y ir (y , t )dV(y)  = 0. 

and in particular that 

s 

(2.9) 

(2.10) 

(2.11) 

t Consider, for example, the simple (though highly artificial) case when the motion of the 
centre of mass is random, but there is no dispersion about the centre of mass (a 'billiard-ball' 
cloud). Then G(x, t )  is constant and equal to the initial concentration, but ro(x+X,, t )  cannot 
be (even if X, = 0) whenever XZ, =!= 0. 
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It is interesting to note here that (2.7) to (2.11) have been derived without use of 
(2 .5 ) ,  the condition distinguishing relative from absolute diffusion. Therefore (2.7) to 
(2.11) hold in absolute diffusion, when r(y, t )  is defined by an equation like (2.6) with 
r0(X, t )  - ro(X,  t )  replacing c(x,  t ) ,  etc. Another interesting point is to compare (2.7) 
and (2.8) with the generalizations of Corrsin’s invariant referred to above. That work 
considers a homogeneous contaminant field which means that the statistical properties 
of r0(X,  t )  are independent of X. In those circumstances r(y, t )  cannot be defined by 
an equation like (2.6) since the integral over all space cannot exist. The natural corre- 
lation to  use in that case is r * (y ,  t )  defined by 

(2.12) 

(2.13) 

It follows from homogeneity that 

r*(y, t )  = r*( - y, t )  for all y, (2.14) 

which is to be compared with (2.7). It can also be shown from the diffusion equation 
governing ro(X,  t )  that 

S r , ( y ,  t )  d ~ ( y )  = constant, (2.15) 

(Corrsin 1951; Monin & Yaglom 1975, p. 150). While r (y ,  t )  and r*(y,  t )  seem to be the 
simplest, and most natural, correlation functionst for the respective situations which 
they describe, and while they both have a constant integral, there is no evidence 
that the constant in (2.15) is generally zero, unlike that in (2.8). It is also interesting 
to note that, while Corrsin’s original derivation of (2.15) was from the diffusion 
equation, his result can be obtained, like (2.8), using only conservation of mass - see 
Monin & Yaglom (1975, p. 152). 

The final invariant property to be presented here is that 

m$?)(t) = yiyjr(y,t)dB(y) = 0. s (2.16) 

Unlike (2.7) to (2.11) this holds only in relative diffusion, so that (2.5) is needed. The 
proof of (2.16) is easy. By the definition of r(yJt) in (2.6),’ I 

m$)(t) = &-2 y&c(x,t)c(x+y,  t)dV(x)dV(y), IS 
n n  

t Note that although r* can be defined by (2.12) for the fhite cloud considered in this paper, 
it depends on X, as well as y and t. This is also true when an r* is defined in terms of c(x,  t ) .  
On the other hand, as noted earlier, T does not exist for a homogeneous contaminant field. 
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The integral over z in the first term vanishes by (2.4), and each of the two integrals 
in the second term vanishes by (2.5). It is perhaps worth reiteration that (2.16) re- 
quires no assumption about the contaminant or the turbulent velocity, other than 
that the total mass be conserved and that the statistical properties be defined in the 
framework of relative diffusion. 

It is evident that many other statistical properties (defined, for example, in terms 
of the values of c(x , t )  at more than two points) will have invariants derived by use 
of (2.4) and (2.5). This remark will not be taken further here. 

3. Some consequences of the invariants 
The analogous results for a plume and experimental support 

Experiments on clouds are rare because of their obvious difficulty. However analogous 
invariants hold for steady plumes on which observations are much more commonly 
made. To be specific, consider the experimental situation used by Sullivan (1965), 
and described in Sullivan (1971), Chatwin & Sullivan (19793). Dye was released at a 
steady rate from a source in the thin surface layer.of Lake Huron, and was advected 
downstream at the surface water velocity (more precisely by the combined effects of 
the water velocities in the thin surface layer). Essentially therefore the dye dispersed 
in two dimensions. Let x denote distance from the source along the instantaneous 
centre-line of the dye plume, and let y denote distance in the lake surface normal to 
this centre line. Define r(y,  x, t )  and c(y, x ,  t )  in the ways obviously analogous to those 
described above for a cloud (Chatwin & Sullivan 1979b), and r(y,  x )  by the analogue 
to (2.6), namely 

J --OD 

where Q is a measure of the rate of dye emission by the source, and r does not depend 
on t because this rate is constant. 

Using approximations derived in 3 3 of Chatwin & Sullivan (19793) - in particular 
equation (3.14) of that paper - it  is easy to show that the analogues of (2.7) to (2.11), 
and (2.16) hold approximately. Thus 

r(y,  2) = r (  - y ,  2) for all y; (3-2) 

m 
m(O)(z) = 1 r (y,  x )  dy x 0; 

--m 

y2”+4(y, x) dy = 0;  

m(2)(x) = y2r(y,x)dy x 0. 

(3.3) 

(3.4) 

(3.5) 

Of these results, only (3.5) requires the use of a relative diffusion framework (as with 
the analogous result (2.16) for a cloud). 

Table 1 gives values of m(0) and m(2) for the plumes in Sullivan’s experiments. Within 
experimental accuracy both are zero. 
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The representation of r(y ,  x) and r (y ,  t )  

It is conventional in turbulence theory to represent random functions and correlation 
functions like r , ( y , t )  in terms of Fourier transforms. This is appropriate when the 
random function is stationary with respect to the transformed variable (Monin & 
Yaglom 1975, pp. 1-22), but not when it is inherently non-stationary or inhomo- 
geneous. In the case of the steady plume considered above, both r(y,  x, t )  and c(y, x, t )  
are inhomogeneous in y because of the requirement that there be constant finite mass 
flux along the plume. Observations suggest (Sullivan 1971; Chatwin & Sullivan 19793) 
that the statistical properties decay to zero as y -+ 5 co like exp ( - &y2) for some a. 
Such rapid decay ought, it seems, to be reflected in a choice of functions other than 
exp (iky) for the representation of r (y ,  x, t )  and c(y, x, t ) .  

A set of complete functions on ( - 03, co) is H,(y) exp ( - 4y2) (n = 0, 1 ,2 ,  . . . ), where 
H,(y) is the nth Hermite polynomial defined by 

(3.6) H,(Y) exp (- 4v2) = ( - 11, (d /d!P exp ( - 
The use of these functions in turbulence theory has been discussed by Kamp6 de Fkriet 
(1966) and Lumley (1970). Whether they can profitably be used to represent random 
functions like F(y, 2, t )  or c(y,z, t )  will not be discussed here (although they were 
employed by Chatwin (1970) in a discussion of turbulent diffusion of a cloud in a 
pipe). But consider r (y ,  x) defined by (3.1). For any Z(x), it can be represented formally 
in the following way: 

(3.7) 
Y 09 

r(y ,  5) = 3 A,(%) H,( Y )  exp ( - &Y2), Y = - 
TL=O I@)’ 

where the A,(x) are obtained by 

(The question of the conditions on r(y,x) which guarantee convergence of the series 
in (3.7) is discussed by Kendall & Stuart (1969, pp. 161-163), but it may be sufficient 
if the series is simply asymptotic, or convergent in a generalized sense.) Because of 
the form of the Hermite polynomials, the invariant relations (3.2) to (3.5) ensure that 
A2,+l(x) = 0 (n  = 0,  1, ...) and that A,(x) = A,@) = 0. Thus (3.7) reduces to 

That this representation is useful practically is shown in figure 1 where the solid line 
shows r ( y ,  x) measured in the experiments by Sullivan (1965) and presented in Chatwin 
& Sullivan (19793),$ and the dashed line shows the first term of (3.9); the curves were 
normalized to coincide a t  y = Y = 0 and Z(x) was chosen to be (+) L(x), where L ( x )  
was a mean plume width defined and measured in Chatwin & Sullivan (19793). 
Considering the experimental errors involved, the agreement is excellent. It should 
be noted that the widths of the plumes in the experiments were such that they lay 
within Kolmogoroff’s inertial subrange; the factor (9.) used to fit the theory with 

t Since r is a true correlation function, its Fourier transform must be non-negative for all 

1 In the notation of Chatwin & Sullivan (1979b) the curve shown here is Q1( Y).  
Y ;  this is satisfied for (3.9) provided ( -  l)n A,&) > 0.  
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FIGTJRE 1. The solid line is r ( y ,  2) defined in (3.1) and measured by Chatwin & Sullivan (1979 b) 
The dashed line is the first term of (3.9). 

the data should then be independent of Reynolds number (provided a precise criterion 
is used for defining Z(x) - unlike the situationin this paper !). In general theappropriate 
factor could depend on the injection conditions, as well as Reynolds number, if this 
were too small for Kolmogoroff’s theory to be applicable. 

The experimental curve in figure 1 was determined from twelve sets of data in the 
way described in detail by Sullivan (1971) and Chatwin & Sullivan (19793). Table 1 
shows the values of certain normalized moments ,dn)(x) of r (y ,  x) for each set of data, 
where 

(3.10) 
1 C(Y, x) dY 

2p(7qz) = dy --m 

Yl”C(Y, 4 
-m 

If r (y ,  x) is described by the first term of (3.9) and if, as Sullivan’s observations suggest, 
C(y, x) is a Gaussian function of y, then it is easily shown that 

(3.11) 

The dependence of p(n)(x) on L(x) and r (0 , z )  is discussed later. To eliminate this, 
table 1 shows also the measured values of p@)/p(4), p@)/p@) and p“3/,~(~).  Within experi- 
mental error, and given the limited number of realizations, the median values of 
these ratios are not inconsistent with the values predicted by (3.11). This is further 
support that, in practice, the first term of (3.9) may well describe r(y ,  x). 

A description of the relative dispersion of a plume was given in Chatwin & Sullivan 
(1979b) based on the fact that significant values of c(y,x,t) are generated by the 
transfer of contaminant from the central region of the plume outwards by those 
eddies primarily responsible for the plume spread. On the basis of this idea of a domi- 
nant eddy size - of length scale of order L(z) - i t  was argued that r(y ,  z) should have 
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Number 
of 

Sta- cros- 
tion sings rn(Q)/rn$) 

1-1 25 0.016 
1-2 8 0.011 
2-1 25 0.450 
2-2 20 0.018 
3-1U 26 0'050 
3-1L 27 0.067 
3-2U 16 0.030 
3-2L 16 0.042 
4-1u 12 0.020 
4-1L 9 0.048 
4-2 10 0.010 
5-1 15 0-017 

m(2)/in:) 

0.003 
0.036 
0.395 
0.005 
0.036 
0.264 
0.026 
0-049 
0.036 
0.059 
0.002 
0.012 

p(4) p(6) 

0.121 0.174 
0.200 0.740 
0.100 0.990 
0.128 0.470 
1.26 6.70 
0.173 1.10 
0.218 0.995 
0-175 0.795 
0.032 0.040 
0.283 1.14 
0.057 0.165 
0.165 0.875 

Median value 
With I/L = AeQ 

Value from (3.11) 

p(8) 

1.19 
1.96 
3.55 
1.45 

3.73 
3.14 
2-47 
0.217 
2.82 
2.42 
3.20 

24.0 

p(S)/pC4) p(S)/p(S) p"3)/pC4) L 

1.4 6.9 10.0 10.9 
3.7 2.7 10.0 12.7 
9.9 3.6 35.6 1.6 
3.7 3.1 11.2 12.2 
5.3 3.6 19.2 3.5 
6.3 3.4 21.6 2.1 
4.5 3.1 14.4 5.2 
4.6 3.1 14.4 3.9 
1.3 5.5 6.8 7.8 
4.1 2.5 10.0 3.9 
2.9 1.5 4.4 14-4 
5.3 3.7 19.2 8.3 

4-1 3.1 11.2 

3.7 2,5 9.2 

TABLE 1. The values of the moments of r(y, 2). For specification of the stations, the first number 
refers to the plume, the second to the downstream location and the letters U or L to upper or 
lower reading levels (eee Chatwin & Sullivan 1979 b). The moments dn), are defined in (3.4), 

y" ] r (y ,  .)I dy. One unit of L is 3.36 m. 

zeros at  y = O(L) and y = O(3L) with stationary values a t  y = O(2L) and y = O(4L) .  
Now H4( Y )  exp ( - $Yz)  has its positive zeros at  0.74 and 2.33, and its positive sta- 
tionary values at 1.36 and 2-86, and these are approximately in the ratio 1 : 3 : 2 : 4 
predicted by the simple description. This suggests both that the description is reason- 
able and that r(y,s) can be approximated well by the first term of (3.9), as figure 1 
and table 1 confirm. 

The one-dimensional representation (3.9) cannot be used for the cloud correlation 
function r (y ,  t ) .  But generalizations of Hermite polynomials to more than one dimen- 
sion exist (Kamp& de Fbiet  1966). Formally r ( y ,  t )  can be represented in the following 
way for an arbitrary positive definite tensor Zpq(t): 

(3.12) 

where the summation convention is used with i,j, . . . , Ic ,  as earlier n is the number of 
tensor suffices, and H&Y!..,(y, t )  is defined by 

The f!$!.,k(t) can be obtained from integrals generalizing (3.8) which will not be 
written down here. (But note that these integrals now involve polynomials G$?,,,k(y, t )  
defined by an equation like (3.13) but replacing Z p q  by its inverse. Details and further 
references are given in Kamp6 de FBriet (1966).) It is sufficient to note here that the 
invariant relations (2.7) to (2.11), and (2.16), once more require all the odd terms in 
(3.12) to vanish identically, and also require A(O)(t) = A$)(t) = 0. Thus, as in (3.9), 
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the expansion (3.12) involves only even terms and begins with n = 4. N o  observations 
exist to test this result, but it should be practically useful. 

Relations between moments of r(y ,  t ) ,  and the distance-neighbour function 

The moments m@l.,k(t) of r ( y , t )  defined in (2.9) can be related to the moments of 
c(x, t) .  It is easily shown, for example, that m&(t), the first moment of r ( y ,  t )  that is 
not identically zero, satisfies 

(3.14) 
where 

--- 
m&(t) = 2{b$'bi!) + b& bj?) + b$)l@}, 

bi?j)(t) = Q-' X ~ X ~ C ( X ,  t )  d V ( x ) .  (3.15) s 
In  particular 

rn{$b(t) = ly14r(y,  t )  d V(y) = 2{b$)b$3)) + 4{ bi;) b!;)], s 
and when the turbulence is isotropic and the initial distribution of contaminant is 
spherically symmetric, 

m 6 $ c Z ( t )  = &m$Jqq(t) {&ij&kkl + &ik&jZ+ &iZ6jk}. 

Of more direct physical and practical importance are the relationships between the 
distance-neighbour function p ( y ,  t )  and the statistical properties of r, where p ( y ,  t )  
is defined by 

This definition is essentially that of Batchelor (1952). Using (2.1) it follows that 

p(y , t )  = Q-' C ( x , t ) C ( x + y , t ) d V ( x ) + r ( ~ , t ) .  (3.17) 

(Note that while it is clear that the same value of p ( y ,  t )  is obtained if r (x ,  t )  and 
r (x  + y ,  t )  in (3.16) are replaced by r0(X, t )  and r0(X + y, t ) ,  each of the two terms on 
the right-hand side of (3.17) is then different although their sum is of course un- 
changed.) 

s 

Define M$y:..)..k(t) and B$')..k(t) by 

M$!,.k(t) = YiY j . . .Ykp(y,  t ) d ~ ( y ) ,  B$?,.k(t) = &-l X i X j  ... x k C ( x , t ) d V ( X ) .  (3.18) s s 
It is easy to show from (3.16) that p(y ,  t )  is even in y ,  so that 

M$;?+:)(t) = 0 for all n. (3.19) 

Using (2.8) and (2.16) it follows from (2.4),  (2.5) and (3.17) that 

M@"'(t) = 1,  M$)( t )  = 2B$)(t) ,  (3.20) 

(Batchelor 1952). More generally it is fairly easy to show that for each n >/ 2, 

{M$n!k-m$n!k> 

is a function only of the values of B$j,..k for r < 2n. For n = 2 the relationship is 

M$& - rn& = 2{B$L, + B$) B p  + B@ B$) + l?p Bg} .  (3.21) 
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Similar results to these hold for steady plumes. Thus for the geometry considered 
earlier define p(y, 5 )  by 

m 

where it is convenient to choose Q to be equal to the uniform value of / C(z, x) dz. 

Since p ( y ,  x) is even in y all its odd moments vanish identically. Others results can be 
derived in an analogous manner to those above. With an obvious modification to 
the notation, some of these are: 

M(O)(Z) = J p ( y ,  x) dy = 1; (3.23) 

-co 

co 

-co 

M(4)(x) - m(*)(x) = 2H4)(x) + 6{B(2)(x)}2; (3.25) 

M@)(x) -  m@)(x) = 2B@)(x)+ 30B(4)(x)B(2)(x)- 20{B(3)(x)}2. (3.26) 

The terms on the right-hand sides of (3.23) to (3.26) are those given by Richardson 
(1926). However he did not define his distance-neighbour function as an ensemble 
average, so the terms m(2n)(x) coming from the fluctuations were not present on the 
left-hand sides of these equations. 

It is clear from these relations however that, if the moments men) of r ( y ,  t )  or r(y, x) 
all vanish, the moments of the distance-neighbour function can be determined from 
those of C ,  and, if C is even, its moments can be determined from those of the distance- 
neighbour function. Normally a function can be determined uniquely if all of its 
moments are known (Monin & Yaglom 1971, pp. 225-226), so that it is of interest to 
ask whether the moments of r (y ,  t )  or r(y, x) ever vanish identically, or, more realisti- 
cally, are small compared with those of the distance-neighbour function. 

Figure 1 shows that within experimental error r(y, z) can be well approximated by 
the first term in (3.9). Since H4(0) = 3 this can be written 

(3.27) 

(3.28) 

The right-hand side of (3.28) was measured in Chatwin & Sullivan (1979b) and found 
to be proportional to {L(z)}-l5, where L(x)  satisfies 

co 

&L2(2) = s Z 2 C ( Z ,  x) dz. 
- w  

(3.29) 

This measured decay of r (0,  x) with L(x)  is consistent within experimental error with 
a least squares fit to the measured values ofy(")(z), defined in (3.1 1)  and given in table 1. 
On the other hand, (3.23) requires p ( y ,  x) to be proportional to {L(x)}-l so that 

r(% X)/P(Y, 4 = {u4)-O~6, (3.30) 
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in these experiments. Since the Reynolds number in the experiments was large, it 
follows that 

L(z) x A(e23/U3)4, (3.31) 

where U is the mean downstream speed, e is the rate of dissipation of mechanical 
energy per unit mass and A is a constant. The conclusion is that the moments m(”(x) 
of r(y, x) become increasingly negligible as II: + 00 compared with the moments 
iWn)(x) of the distance-neighbour function p(y, 2). It then becomes possible for the 
moments of C(y, x )  to determine uniquely all the moments of p ( y ,  x ) ,  and vice-versa, 
if C(y, x) is even in y. 

The results of the experiments used to derive (3.30) showed (Sullivan 1971) that 
in them C(y, x) and p(y, x) both approached Gaussian functions of y, the approach in 
the case of C being the faster (Sullivan 1975). While i t  does not seem possible to prove 
rigorously, using the ideas and techniques described in Lumley (1972), that this 
behaviour occurs, it  is not inconsistent with other observations (Monin & Yaglom 
1975, pp. 577-578). Sullivan (1976) suggested that a necessary condition for p(y,x) 
to be Gaussian was that x be greater than about 300U(v/e)+. 

It seems likely that similar conclusions can be made for a cloud although, as 
explained earlier, no experimental work is available. 

The decay with x of the right-hand side of (3.28), and the decay with t of the equiv- 
alent expression for a cloud depend on K ,  the molecular diffusivity, in the sense that, if 
K = 0 ,  no decay occurs. Note that without this decay p(0 ,  x) and p(0, t )  would be 
constant. It follows that theoretical discussions of clouds or plumes of marked fluid 
particles (i.e. turbulent diffusion with K ,  = 0)  could not determine C in terms of p (or 
vice-versa), nor explain the approach to Gaussianity of either. The point is that r is 
definitely not Gaussian as the analysis in this paper shows, and does not decay if 
K = 0. The mechanism of the decay is discussed in Chatwin & Sullivan (1979a, 6 ) .  

Paul J. Sullivan acknowledges the financial support of the National Research 
Council of Canada during the period when this work was carried out. 
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